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Background: Programmatic need for feed-
forward Reconnaissance data sets from the

Eur L1 [ misSSion concept

 Reconnaissance data is necessary
from both science and engineering
perspectives:

— Engineering reconnaissance for landing
safety

 |s a safe landing site (within a lander’s _

design margins) accessible to a spacecraft? F4

 Assess at least 15 sites to determine
conditions and find two that are safe

— Science reconnaissance for landing site
selection (enabled by the current model
payload)

* |s the landing site scientifically compelling

iIn addressing the goal of exploring Europa
to investigate its habitability?

Highest Resolution Europa
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Background: Programmatic need for feed-
forward Reconnaissance data sets

» Types of data required for landing safety

Observation Purpose
High-resolution - Map block abundance
Imaging

- Characterize =2 meter-scale
surface roughness

Stereo imaging - Map surface slopes for lander tilt
hazard, terrain relative navigation

Thermal IR Imaging | - Verify visible block abundance &

Eisliinees extrapolate to submeter scale

temperature and - Validate average surface
Bolometric albedo) | roughness & extrapolate

- Identify regolith cover

« Engineering reconnaissance capabilities
would also provide additional data for the
landing site scientific rationale

Galileo
PPR
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Background: Programmatic need for feed-
forward Reconnaissance data sets

» Types of data required for selecting a scientifically
compelling landing site

Observation Purpose
Spectroscopic - Identify sites of compositional interest for
imaging habitability

- Identify concentration and local variability,
ocean representation, and recent extrusion

Context imaging - Provide context to global scale geologic
processes

- Identify sites of recent geologic activity,
relation to subsurface extrusions and
upwelling

Sounding radar - Identify sites proximal to shallow liquid
water and potential for recent extrusion of
ocean material

Stereo imaging - Understand the relative uplift and
(context and high- subsidence processes that relate the site to
resolution) subsurface exchange

- Characterize local slopes that drive mass
movement and landform development
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—

WY Reconnaissance Justification Document

One of the major tasks In this iteration was the preparation
of a document which justifies each requirement in the
RTM. We discuss the reasoning behind the engineering
and science requirements, and include relevant
references. This document is in review.
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Reconnaissance Traceability Matrix

 The Reconnaissance traceability matrix (RTM) has been
scrubbed and modified as follows:
 Two investigations have been merged

 The measurement requirements have been placed into a
simplified form

« Alllanding safety and science measurements have been prioritized
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Summary RTM

Europa Reconnaissance Traceability Matrix

Goal Objective Investigation

S |Assess the distribution of surface SL.1 |Determine the distribution of blocks and other roughness elements (e.g.,
g @ hazards, the Ioad-bearing capacity of the scarps, steps, cracks, divots, cusps, spires, etc.) within a potential landing site
= = at scales that represent a hazard to landing.
o ¢ |surface, the structure of the subsurface,
= o gland the regollth thickness. SL.2 Determlne the distribution of slopes within a potential landing site over
[C=n=Y baselines relevant to a lander.
Q 'g o
g © Lﬁ SL.3N |Characterize the regolith cohesiveness and slope stability within a potential
< -T_I landing site.
O o
a2 SL.4 |Determine the regolith thickness and whether subsurface layering is present
n % within a potential landing site.

%2

Assess the composition of surface SV.1 |[Characterize the composition and chemistry of potential landing sites with an

emphasis on understanding the spatial distribution and degradation state of

materials, the geologic context of the : i
endogenically-derived compounds.

surface, the potential for geologic activity,

the proximity of near surface water, and [Sv.2  [Characterize the potential for recent exposure of subsurface ice or ocean

the potential for active upwelling of material and resurfacing vs. degradation of the surface by weathering and
ocean material erosion processes and provide geologic context for potential landing sites.

Mission to Europa

Europa

SV.3 |Characterize the potential for shallow crustal liquid water beneath or near
potential landing sites.

Select a Safe and Scientifically Compelling Site for a Lander

SV.4 |Characterize anomalous temperatures (that which are significantly out of
equilibrium with expected nominal diurnal cycles) indicative of current or recent
upwelling of ocean material at or near potential landing sites

SV. Characterize the Scientific
Value of Landing Sites on
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It would likely be challenging to operate the entire payload
and acquire all possible data during low-altitude flybys

Some data types are of lower priority, and are more
challenging to acquire

As a result, Reconnaissance measurements have been
prioritized such that they can be woven into the operations
plan or descoped if necessary

We have prioritized the RTM measurements for both
science and landing safety, based on the assumption that
landforms of the same type will have similar characteristics
regardless of where on Europa’s surface they appear
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Measurement prioritization

 R1: Highest priority

* Required: Fully characterize 15 sites containing landforms of high scientific
interest (to be chosen ahead of time, with additional sites for margin).
Acquire for floor measurement ellipses (2 x 10 km)

» Desired: Acquire for baseline measurement ellipses (5 x 10 km).

 R1 measurements include RC and SWIRS
 R2: Medium priority
* Required: Characterize all major landform types
» Desired: Acquire over all candidate floor (2 x 10 km) landing ellipses
 R2 measurements include RC, Thl, TI, IPR
 R3: Lowest priority
» Acquire on a best-effort basis

* R3 measurements include RC, IPR, Thli
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&% What constitutes a “landform”? £

The RTM commonly refers to “landforms” as a measurement priority.
Principle landforms of interest are:

 Chaos
e Lenticulae
e Dark plains
e Ridges

e Double ridges
 Ridge complexes

e Bands

 Lineated bands
e Smooth bands

* Impact features

—

— Highest priorities
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Up to several tens of km in extent

Characterized by polygonal
blocks of ridged plains within a
matrix of hummocky material

May be low-lying or high-
standing relative to the
surrounding plains
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Up to several tens of km in extent

Characterized by polygonal
blocks of ridged plains within a
matrix of hummocky material

May be low-lying or high-
standing relative to the
surrounding plains

('5 Candidate !
"4 “landing f
A ellipses

Flooer recon
imaging strip size
(2 x 10 km)

P

’

11/4/13

13



L enticulae

 May be related to chaos

e Circular to elliptical features 10s
to 100s of meters in relief

« Commonly 10-15 km in diameter

* May have positive topography
(domes), negative (pits) or of low
albedo (“spots”)

* Most pit-type lenticulae disrupt
preexisting terrain with chaos-like
materials
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L enticulae

May be related to chaos

Circular to elliptical features 10s
to 100s of meters in relief

Commonly 10-15 km in diameter

May have positive topography
(domes), negative (pits) or of low
albedo (“spots”)

Most pit-type lenticulae disrupt
preexisting terrain with chaos-like

materials Candidate
landing

ellipses
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Dark plains

 Low-albedo material showing
clear embayment
relationships with the
surrounding terrain

e« Commonly associated with
chaos and lenticulae
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Low-albedo material showing
clear embayment
relationships with the
surrounding terrain

Commonly associated with
chaos and lenticulae

landing
ellipses
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Double ridges

* Ridge pairs separated by a
medial trough are Europa’s
most common landform

 Range in length from few km
to >1000 km, 0.2 to
>4 km wide

 Mass wasting along flanks
 May be cycloidal in planform

11/4/13 18



Double ridges

* Ridge pairs separated by a
medial trough are Europa’s
most common landform

 Range in length from a
few km to >1000 km,
0.2 to >4 km wide P

e Mass wasting along flanks & Candidate KU #

landing &

 May be cycloidal in planform A5 SNty
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Multiple subparallel
anastamosing and inosculating
single or double ridges

Up to tens of km wide, many
tens of kilometers long

Linear to curvilinear with
sinuous or undulating margins

11/4/13
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Multiple subparallel
anastamosing and inosculating
single or double ridges

Up to tens of km wide, many
tens of kilometers long

Linear to curvilinear with
sinuous or undulating margins
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Lineated bands

Up to 30 km wide,
>100 km long

Contrast in albedo
and/or surface
texture compared
with the
surrounding terrain

Distinct margins,
bounded by ridges

Narrow central
trough, internal
structure of ridges
and troughs trending
subparallel to
boundaries

11/4/13

22



Lineated bands

Up to 30 km wide,
>100 km long

Contrast in albedo
and/or surface
texture compared
with the
surrounding terrain

Distinct margins,
bounded by ridges

Narrow central
trough, internal
structure of ridges
and troughs trending
subparallel to
boundaries
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Smooth bands

e Same size and albedo
characteristics as lineated
bands

« Distinct margins, not bounded
by ridges

e Narrow central trough, internal
structure of hummocks
trending subparallel to
boundaries, may be fractured
parallel to margins
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Smooth bands

e Same size and albedo
characteristics as lineated
bands

« Distinct margins, not bounded
by ridges

e Narrow central trough, internal
structure of hummocks
trending subparallel to
boundaries, may be fractured
parallel to margins
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28 impact features have been
identified within the imaged
regions of Europa’s surface

Named craters range from 4 —
45 km in diameter

The largest, Tyre, is a multi-
ring basin




28 impact features have been
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regions of Europa’s surface

Named craters range from 4 —
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Widespread terrain type:
Background ridged plains

* Not targeted (not
considered a landform)

» Various morphology and
states of degradation

e Oldest stratigraphic unit —
probably longest
exposure to space
environment

* Bright, water-rich

* May hold evidence of
Europa’s past
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Preliminary F-7 trajectory analysis
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13-F7 All 45 Flybys (SWIRS, IPR, RC)

Recon Camera

Solar Incidence Colors

11/4/13 30



Reconnaissance Camera

Measurements

SL.la - Measure the occurrence and lengths
of shadows cast by blocks protruding 1 m or
more above the surface, and the abundance
and nature of surface roughness elements at
scales from >10 m to <1 m [R1].

SL.2a - Measure surface slopes of up to 25°
on a 3 m baseline for all azimuths [R1].

SL.3b - Identify small scale landforms
associated with mass movement [R3].

SL.4b - Identify small scale landforms
associated with exposed layers [R3].

SV.2a - Identify small scale landforms
diagnostic of the local geologic history of
potential landing sites [R2].

Requirements

Monoscopic Baseline Floor

Areal Coverage (km) 5x 10 2x10
Incidence Angle (°) 45 -70 20 - 80
Spatial Resolution (m) 0.5

Stereoscopic Baseline Floor

Areal Coverage (km) 5x 10 2x10
Overlap (%) >90 >90
Incidence Angle (°) 20-70
Convergence Angle (°) 15-30

Spatial Resolution (m) <0.75

11/4/13
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Reconnaissance Camera

Instrument Description Observing Scenario
* Pushbroom panchromatic visible imager » Can meet resolution requirement inside CA
« Single-axis along-track flip mirror +60s (assuming a flyby speed of 4.5 km/s)
« IFOV of 10 prad (ground sample dimension of ¢ Length of the ground track for this period
0.5 m/pixel from a range of 50 km) would be ~534 km
« Cross-track FOV of 92 mrad (4.6-km swath » Time to acquire a stereo pair would be ~9s at
width from 50 km range) 50-km range down to about ~6s at CA
: 25 km flyby
50-km slant Mirror 15° Mirror 15° altitude
range; CA-60s  forward back

J A4

L 4
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Reconnaissance Camera - Flyby 6
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Reconnaissance Camera - Flyby 9
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Reconnaissance Camera - Flyby 11
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Reconnaissance Camera - Flyby 13
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Reconnaissance Camera - Flyby 28
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Reconnaissance Camera - Flyby 35
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Reconnaissance Camera - Flyby 38
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Reconnaissance Camera - Flyby 40
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Reconnaissance Camera - Flyby 43

Prws 43 CA (27,4201 X, 20,0008 W)
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Reconnaissance Camera - Flyby 45

Pass 45 CA (RT3 N, 9.92%0 W)
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Thermal Imager

Measurements Requirements
* SL.1b - Characterize the fractional area of _
block coverage and the areal distribution of
roughness elements [R2]. Areal Coverage (km) 5x 10 2x10
» SL.3a - Determine the regolith-component 10 3pm *&
thermal inertia of the upper decimeter-scale Local solar time (hr) ??a;nm_ g;nm
surface layer [R3]. B
: : <250
» SL.4a - Characterize the depth of regolith to Spatial Resolution (m
"bedrock/ice” [R3]. P (m) *<15000
» SV.4a - Determine the presence of surface 2 channels

temperatures in excess of diurnal equilibrium SlpearEl R

indicative of active or recent extrusion,
upwelling, or outgassing [R3].

(<80% overlap)

*requirement for SL.4a only
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Thermal Imager

Instrument Description Observing Scenario
* Pushbroom infrared imager with two non- » Operate continuously below an altitude of
overlapping spectral channels (8 — 35 ym and <60,000 km
35— 100 pm) plus a bolometric albedo « Nominally nadir pointed and operated in
measurement pushbroom mode

e IFOV of 2.5 mrad
e Cross-track FOV of 100 mrad

25 km closest
approach altitude

™~

A\

2000 km”~

altitude

2000 km
altitude
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Thermal Imager — Flyby 28

11/4/13 49



11/4/13 50



L s
]:ﬁ.__“- e

-"
ey
7 -,
. v
1.9 -, &
~ -

~ )
”

11/4/13

51



11/4/13 52



11/4/13 53



Thermal Imager — Flyby 45
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Thermal Imager — All 45 Flybys

Passes 1 - 45
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Thermal imaging on 13-F7 flyby

70.0
50.0
30.0
o
o
= 100 C ] 15T 12- 2 AM
[ ﬂ L 2] !
'g CILST 6- 10 AM
g -10.0 LST 1D AM - 3 PM
CLST 3 - 6PM
- ®LST6PM - 12 AM
-30.0 =
-50.0 | | ] ] 0 ] ] / ’
L L] Near Thera/Thrac
-70.0 f [ ] P
L ]
-90.0

-180.0 -150.0 -120.0 -90.0 -60.0 -30.0 0.0 300 0.0 90.0 1200 150.0 180.0

» Plot shows locations of 13-F7 flyby points with <103 km ca.

* The 6 sites that meet the RTM measurements only with off-nadir pointing are in light yellow; those that
meet the requirements with strictly nadir pointing are in light green.

* Only two flybys (28 and 30) allow lower resolution pre-dawn viewing of sites observed earlier at midday.
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“A i Shortwave Infrared Spectrometer (SWIRS) |,

Measurements Requirements
" endogenicaly derved compounde 2. T
endogenically derived compounds [R1].
Areal Coverage (km) 5x 10 2x10
<45 at

*Incidence Angle (°) equator

*Local solar time (hr) ~ 9am —3pm

Spatial Resolution (m) <250

Spectral Resolution
(<2500 nm)

Spectral Resolution
(2500-5000 nm)

*requirement drawn from science TM

10 nm

20 nm
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Shortwave Infrared Spectrometer (SWIRS)
ORIGINAL DESIGN

Instrument Description Observing Scenario
* Pushbroom spectrometer with single-axis » Global-scale pushbroom coverage on
along-track scan mirror system approach and departure at ranges below
 640x480 HgCdTe detector with wavelength 66,000 km altitude
cutoff adjusted to 5 pm » Pushbroom coverage of selected regions
« IFOV of 150 prad along ground track at altitudes below 2000
« Cross-track FOV of 72 mrad (4.1°) km
+36-deg -45-deg full
mirror angle mirror angle 123 km 50 km closest
altitude approach altitude

270-s observation;
~26 km strip length

A
750 km
altitude
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SWIRS - Flyby 6

Incoming Pass 6, CA UTC = 2029-06-04T22:41:09, CA Alt = 26.80 km Outgoing

" " o . o« . 3 ¥ . . "

s me s aa -a

&
J

Recon Camera

Solar Incidence Colors

11/4/13 59



SWIRS - Flyby 9

Incoming Pass 9, CA UTC = 2029-07-17T20:13:20, CA Alt = 26.80 km

" "™ . o . . » .- . "

s e s aa -a

&
1

Recon Camera

Solar Incidence Colors
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SWIRS — Flyby 11

Incoming Pass 11, CA UTC = 2029-08-15T06:10:26, CA Alt = 26.80 km Outgoing

" " o . o« . " ¥ . . "

s e s aa -a

&
1

Recon Camera

Solar Incidence Colors
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SWIRS - Flyby 13

Incoming Pass 13, CA UTC = 2029-09-12T15:59:49, CA Alt = 26.80 km Outgoing

" " o . o« . " ¥ . . "

s e s aa -a

&
1

Recon Camera

Solar Incidence Colors
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SWIRS - Flyby 28

e Incoming Pass 28, CA UTC = 2030-05-27T07:35:43, CA Alt = 26.80 km

" T o - .« . " ¥ . . "

S v Recon Camera
Solar Incidence Colors
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SWIRS - Flyby 35

Incoming Pass 35, CA UTC = 2031-03-26T14:14:49, CA Alt = 26.80 km Outgoing

" "™ ] . .« . v . .

> 5 Recon Camera
Solar Incidence Colors
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SWIRS - Flyby 38

licoming Pass 38, CA UTC = 2031-05-29T03:36:15, CA Alt = 26.80 km Outgoing

" " o .- .« . . » . .

Recon Camera

Solar Incidence Colors

11/4/13 65



SWIRS - Flyby 40

Incoming Pass 40, CA UTC = 2031-07-07T04:31:06, CA Alt = 26.80 km Outgoing

Recon Camera

Solar Incidence Colors
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SWIRS - Flyby 43

Incoming Pass 43, CA UTC = 2031-08-29T08:55:19, CA Alt = 26.80 km Outgoing

" " o . .« . . v . .

Recon Camera

Solar Incidence Colors
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SWIRS — Flyby 45

licoming Pass 45, CA UTC = 2031-10-07T08:46:45, CA Alt = 26.80 km Outgoing

9 5 Recon Camera
Solar Incidence Colors
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SWIRS — All 45 Flybys

Recon Camera

Solar Incidence Colors
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Shortwave Infrared Spectrometer (SWIRS)
PROPOSED REDESIGN

Instrument Description Observing Scenario
» Assumes 3x reduction in focal length: » Global-scale pushbroom coverage on
« IFOV of 450 prad approach and departure at ranges below
» Cross-track FOV of 216 mrad (12.4°) 22,000 km altitude

» Pushbroom coverage of selected regions
along ground track at altitudes below 667 km

+45-deg full 50 km closesF
mirror angle approach altitude _45-deg full

24-s observation; mirror angle
~0.2 km strip length f

>

51 km
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SWIRS - Flyby 6
— previous design; poor incidence angle

Incoming Pass 6, CA UTC = 2029-06-04T22:41:09, CA Alt = 26.80 km

" " o . .« . 3 ¥ . . "

Recon Camera

Solar Incidence Colors
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SWIRS - new footprints, flyby #6
= huge improvement in incidence angle

Pass 6, CA UTC = 2029-06-04T22:41:09, CA Alt = 26.80 km

' Recon Camers
Solar Incidence Colors _ : _ econ Camera
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@ SWIRS — new footprints, flyby #6 A
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SWIRS (hi res)+Recon, Recon
Passes Only
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SWIRS Low Resolution Coverage,
Passes 1 - 45

F7 Recon-SWIRS Passes

N Solar Incidence Colors  NINNE. ., .
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How many landform types do we image
on one track?

Pos 6 CA(ASANY X 1774028 1)

Duration (from fiest to last frame) 1297«
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How many landform types can be imaged
during one ~25 km altitude track?

Double ridge Background Chaos Background
ridged plains ridged plains
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How many landform types can be imaged
during one ~25 km altitude track?

Chaos Smooth band

Background
ridged plains
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How many landform types can be imaged
during one ~25 km altitude track?

Agenor Linea Unknown Chaos
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How many landform types can be imaged
during one ~25 km altitude track?

P 6 CA (54919 177400 F)
Darathon (from fhest to bt frame) 1297 5

Preliminary analysis of one low-
altitude flyby suggests that
landing ellipses of the following
feature types can be
characterized with the RC:

e Chaos-7

» Background ridged plains - 3
e Smooth bands -1
 Double ridge - 1

e Unknown -3

» Agenor Linea (bonus)
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Summary
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Accomplishments

Drafted Reconnaissance justification document — in review
Streamlined Reconnaissance traceability matrix
Prioritized Reconnaissance measurements

Defined what constitutes a “landform” and determined
approximate coverage of different features by representative
landing ellipses

Performed initial evaluation of reconnaissance data
acquisition in F7 trajectory (RC, Thl, SWIRS)

Started investigation of SWIRS footprints with wider FOV
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Summary of F7 trajectory

Preliminary investigation of the 13-F7 trajectory suggest
the following:

 Recon camera measurements (Priority R1) could be made without
Impeding the science data collection

e Multiple landforms could be investigated on each flyby, lending
confidence that 15 sites would be fully characterized

« SWIRS data collection may not meet the Recon measurement
requirements — we are investigating a wider FOV

 Thermal imaging (Priority R2) is a challenge

— Multiple sites could be imaged but only at one time of day; very few
sites could be imaged more than once

— Multiple sites could be imaged during 10am — 3pm, but they are limited
to two ~30° longitude bands, 180° apart

— Additional sites could be imaged if off-nadir pointing is employed
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Plans for iteration 7 (1)

Focus area Task
13-F7 tour Complete evaluation of Recon camera coverage
evaluation

Complete evaluation of thermal imaging
Complete evaluation of SWIRS coverage
Evaluate topographic imaging

Evaluate number and variety of landforms imaged

Evaluate coverage of landforms in sites of high and low
radiation exposure
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Plans for iteration 7 (2)

Focus area Task

Science and Reevaluate composition resolution requirements
safety (with ESAG)

investigations

Finalize definition and prioritization of RTM
measurement requirements

Investigate context imaging requirements

Evaluate need for stereo high-res data at each landform
— can some of groundtrack be acquired in mono?

Recon Conops Complete a full 13-F7 conops for Recon to integrate with
and balance with mission resources requirements
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